济南济柴环能燃气发电设备有限公司全国服务热线:

0531-62325028
当前位置:首页>>新闻中心>>行业新闻合金尾气发电机组废气再利用技术解析
分类导航
产品展示
联系我们
济南济柴环能燃气发电设备有限公司

联系电话:罗总18653152416

服务热线:0531-62325028

联系地址:中国(山东)自由贸易试验区济南片区孙村街道经十东路33688号章锦综合保税区联东U谷科创中心5号楼101

合金尾气发电机组废气再利用技术解析

来源:https://www.huannengpower.cn/ 文章作者:济柴环能 发布时间:2025-05-20

  在能源转型与环保政策双重驱动下,工业尾气处理技术正经历革命性变革。合金尾气发电机组废气再利用技术作为新兴的能源解决方案,通过创新性的热能转化与物质循环机制,实现了废气资源的高效利用。本文将从技术原理、系统构成、能效优化三个维度,系统性阐述该技术的核心价值与应用路径。

  Driven by both energy transition and environmental policies, industrial exhaust gas treatment technology is undergoing revolutionary changes. The technology of reusing exhaust gas from alloy tail gas generator sets, as an emerging energy solution, achieves efficient utilization of exhaust gas resources through innovative thermal energy conversion and material circulation mechanisms. This article will systematically explain the core value and application path of this technology from three dimensions: technical principles, system composition, and energy efficiency optimization.

  一、技术原理创新

  1、 Technological principle innovation

  合金尾气发电机组废气再利用技术的核心,在于突破传统尾气处理模式的“末端治理”思维,构建“热能回收-物质转化-能源再生”的闭环体系。其技术路线呈现三大突破:

  The core of the waste gas reuse technology for alloy tail gas generator sets lies in breaking through the traditional tail gas treatment mode's "end of pipe treatment" thinking and constructing a closed-loop system of "heat recovery material conversion energy regeneration". Its technological roadmap presents three major breakthroughs:

  梯级热能捕获:采用多级换热阵列,将尾气中高温区(800℃-1200℃)的热能转化为蒸汽动力,中温区(300℃-800℃)的热能驱动有机朗肯循环(ORC)发电,低温区(<300℃)的热能用于预热助燃空气,实现热能梯级利用。

  Cascade thermal energy capture: Using a multi-stage heat exchange array, the thermal energy in the high temperature zone (800 ℃ -1200 ℃) of the exhaust gas is converted into steam power. The thermal energy in the medium temperature zone (300 ℃ -800 ℃) drives the organic Rankine cycle (ORC) for power generation, while the thermal energy in the low temperature zone (<300 ℃) is used to preheat the combustion air, achieving cascade utilization of thermal energy.

  化学能转化:通过催化重整技术,将尾气中的CO、H等可燃成分转化为合成气(主要成分为CO和H),作为燃气轮机的补充燃料,使能源利用率提升25%-35%。

  Chemical energy conversion: By catalytic reforming technology, CO and H in exhaust gas can be converted By converting combustible components into synthesis gas (mainly composed of CO and H), it can be used as a supplementary fuel for gas turbines, increasing energy utilization efficiency by 25% -35%.

  物质循环再生:利用尾气中的氮氧化物(NOx)作为氧化剂,在选择性催化还原(SCR)系统中实现自循环,减少尿素溶液消耗量40%以上。

  Material cycle regeneration: Utilizing nitrogen oxides (NOx) in exhaust gas as oxidants to achieve self circulation in selective catalytic reduction (SCR) systems, reducing urea solution consumption by more than 40%.

  二、系统构成解析

  2、 System composition analysis

  该技术体系由四大核心模块构成,形成高度集成的能源转化网络:

  This technology system consists of four core modules, forming a highly integrated energy conversion network:

  预处理单元:

  Preprocessing unit:

  配置旋风除尘器与金属纤维过滤器,实现颗粒物分级去除。旋风除尘器针对直径>10μm的颗粒,过滤效率达99.5%;金属纤维过滤器对亚微米颗粒的捕获率超过95%。

  Configure cyclone dust collector and metal fiber filter to achieve graded removal of particulate matter. The cyclone dust collector has a filtration efficiency of 99.5% for particles with a diameter greater than 10 μ m; The metal fiber filter has a capture rate of over 95% for submicron particles.

  集成热能回收装置,通过相变材料(PCM)储存显热,为后续工艺提供热源。

  Integrated thermal energy recovery device stores sensible heat through phase change material (PCM) to provide a heat source for subsequent processes.

  热能转化模块:

  Thermal energy conversion module:

  蒸汽发生系统:采用膜式水冷壁结构,换热系数达200W/(m²·K),蒸汽参数可调至10MPa/540℃。

  Steam generation system: adopts a membrane water-cooled wall structure, with a heat transfer coefficient of 200W/(m² · K), and steam parameters can be adjusted to 10MPa/540 ℃.

  ORC发电系统:使用R245fa有机工质,在80℃温差条件下,系统热效率达12%-15%。

  ORC power generation system: using R245fa organic working fluid, the thermal efficiency of the system reaches 12% -15% under a temperature difference of 80 ℃.

  化学能转化单元:

  Chemical energy conversion unit:

  催化重整反应器:内置蜂窝状贵金属催化剂,在750℃-850℃条件下,CO转化率>90%,H产率提升30%。

  Catalytic reforming reactor: equipped with honeycomb shaped precious metal catalyst, the CO conversion rate is>90% and the H Yield is increased by 30% under the conditions of 750 ℃ -850 ℃.

  合成气净化系统:采用变压吸附(PSA)技术,实现H纯度>99.9%,CO纯度>95%。

  Synthesis gas purification system: using pressure swing adsorption (PSA) technology, achieving H-purity>99.9% and CO purity>95%.

20220310090755780.png

  智能控制系统:

  Intelligent control system:

  部署边缘计算节点,实时采集1200余个过程参数,通过机器学习算法优化运行工况。

  Deploy edge computing nodes, collect more than 1200 process parameters in real time, and optimize operating conditions through machine learning algorithms.

  配置预测性维护模块,基于设备振动、温度等特征参数,提前48小时预警故障。

  Configure predictive maintenance module, based on equipment vibration, temperature and other characteristic parameters, to warn of faults 48 hours in advance.

  三、能效优化策略

  3、 Energy Efficiency Optimization Strategy

  热力学优化:

  Thermodynamic optimization:

  应用分析理论,对系统进行能量品质评估。通过优化换热器排列顺序,减少损15%-20%。

  Application Analyze theory and evaluate the energy quality of the system. By optimizing the arrangement sequence of heat exchangers, we can reduce Loss of 15% -20%.

  采用超临界二氧化碳(sCO)布雷顿循环,在500℃-600℃温度区间,循环效率突破45%。

  Using supercritical carbon dioxide (sCO) Brayton cycle, the cycle efficiency exceeds 45% in the temperature range of 500 ℃ -600 ℃.

  流体力学优化:

  Fluid dynamics optimization:

  运用计算流体力学(CFD)模拟尾气流动轨迹,优化反应器内部结构,降低压降损失30%。

  Using Computational Fluid Dynamics (CFD) to simulate the flow trajectory of exhaust gas, optimizing the internal structure of the reactor, and reducing pressure drop loss by 30%.

  设计脉冲吹灰系统,每24小时自动清除换热面积灰,维持换热效率在90%以上。

  Design a pulse soot blowing system that automatically removes ash from the heat exchange area every 24 hours, maintaining a heat exchange efficiency of over 90%.

  材料科学创新:

  Innovation in Materials Science:

  开发耐高温合金涂层,在1000℃氧化环境下,腐蚀速率<0.1mm/年。

  Develop high-temperature resistant alloy coatings with a corrosion rate of less than 0.1mm/year in an oxidizing environment at 1000 ℃.

  采用陶瓷基复合材料(CMC)制造关键部件,使设备重量减轻40%,热导率提升3倍。

  Using ceramic matrix composites (CMC) to manufacture key components reduces equipment weight by 40% and increases thermal conductivity by three times.

  四、技术演进方向

  4、 Technological Evolution Direction

  当前研究聚焦三大前沿领域:

  The current research focuses on three cutting-edge fields:

  多能互补集成:探索太阳能光热与尾气余热的耦合利用,构建光热-尾气联合发电系统。

  Multi energy complementary integration: Explore the coupling utilization of solar thermal and exhaust waste heat, and construct a solar thermal exhaust combined power generation system.

  数字孪生技术:建立设备运行数字镜像,实现虚拟调试与物理实体的同步运行。

  Digital twin technology: Establishing a digital image of device operation to achieve synchronous operation of virtual debugging and physical entities.

  碳捕集利用:研发新型吸附材料,在尾气处理过程中同步实现CO捕集与资源化。

  Carbon capture and utilization: Developing new adsorption materials to simultaneously achieve CO Capture and resource utilization in the exhaust gas treatment process.

  本文由合金尾气发电机组友情奉献.更多有关的知识请点击:http://www.huannengpower.cn我们将会对您提出的疑问进行详细的解答,欢迎您登录网站留言.

  This article is a friendly contribution from a biogas generator set For more information, please click: http://www.huannengpower.cn We will provide detailed answers to your questions. You are welcome to log in to our website and leave a message

相关产品 / Related products

联系我们
    济南济柴环能燃气发电设备有限公司
  • 国内业务:罗总18653152416
    王总13012995645
  • 国外业务:李总18668968402
    张总18678860619
  • 座 机:0531-62325028 / 69951266
  • 传 真:0531-69958299
  • 邮 箱:hengnenghr@163.com
  • 地 址:中国(山东)自由贸易试验区济南片区孙村街道经十东路33688号章锦综合保税区联东U谷科创中心5号楼101
济南济柴环能燃气发电设备有限公司     网站备案号:鲁ICP备18052890号-3  网站地图 XML TXT

截屏,微信识别二维码

微信号:王总13012995645

点击微信号复制,添加好友

 打开微信